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Supersymmetry theory of microphase separation in homopolymer-oligomer mixtures
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The mesoscopic structure of periodically alternating layers of stretched homopolymer chains surrounded by
perpendicularly oriented oligomeric tails is studied for systems with both stiong) and weak(hydrogen
interactions. We focus on the consideration of the distribution of oligomers along the homopolymer chains that
is described by the effective equation of motion with the segment number playing the role of imaginary time.
The supersymmetry technique is developed to consider associative hydrogen bonding, self-action effects,
inhomogeneity, and temperature fluctuations in the oligomer distribution. Making use of the self-consistent
approach allows one to explain experimentally observed temperature dependence of the structure period and
the order-disorder transition temperature and period as functions of the oligomeric fraction for systems with
different bonding strengths. A whole set of parameters of the model used is found for strong, intermediate, and
weak coupled systems being P@#irvinyl pyridine —dodecyl benzene sulfonic adiB4VP-(DBSA)], P4VP-
[Zn(DBS),],, and P4VP- 3-pentadecyl Pheppkespectively. A passage from the former two to the latter is
shown to cause a crucial decrease in the magnitude of both parameters of hydrogen bonding and self-action, as
well as the order-disorder transition temperature.
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[. INTRODUCTION morphologieglamellar, cylindrical, spherical, efcis shown
to be possiblg1]. However, for the sake of simplicity we
Surfactant-induced mesomorphic structures based on thaill restrict ourselves to lamellar morphology.
association between flexible homopolymers and head-
functionalized oligomers represent a new class of supramo-
lecular materials. They exhibit a rich phase behavior due to
which they have attracted, during the past decade, consider-
able attention of both experimentalidts—5] and theoreti-
cians[6,7]. Microphase separation is the principal property
of such systems which results in the formation of ordered
mesoscopic structures due to the association between the
head group of the oligomer and the corresponding groups of
the homopolymer, on the one hand, and unfavorable polar-
nonpolar interactions between the nonpolar tail of the surfac-
tant molecules and the rest of the system, on the other hand.
The homopolymer-oligomer systems involve two main
classes that are relevant to strong ionic bonds and weak hy-
drogen ones. Unlike conventional copolymers where repul-
sive blocks are bonded together by covalent bonds, there are
various temporary physical interactions which play a crucial
role in the formation of ordered mesophases in such systems.
In the ionic bonding systems the degree of association is
relatively high, so that the polymer chain resembles a comb
copolymer with regularly alternating oligomer side chains.
At the same time, for the systems with temperature-
dependent hydrogen bonds the incompatibility must not be
so strong to induce separation on a macroscopic level. Here,
the microphase separation results in the pgriodic alternation FIG. 1. Schematic picture of the homopolymer-oligomer mi-
of the 'a)’efs of Str?tChed hpmopolymer Ch??uns su.rro.unded bé{rophase separated structuuctuations of periodicity are ig-
perpendicularly oriented oligomer tailsee Fig. 1. Similarly  nqreq The flexible homopolymer chains are pictured as thick
to the conventional copolymer systems, a rich variety of¢yryes with functionalized groupsvhole circles where the head
groups of the oligomersthin tails with heads are attached. The
structure is evolved along the vertical axis with perlog 2| +D

*Electronic address: olemskoi@ssu.sumy.ua determined by the oligomer lengthand the thicknes® of the
"Electronic address: ivank@kmf.troja.mff.cuni.cz homopolymer layer. The number of oligomer groups per homopoly-
*Electronic address: alexsav@kmf.troja.mff.cuni.cz mer ring is put to bex=1/3.
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An example of the ionic bonding systems is the mixtureand to study possible forms of phase diagrams for both mac-
P4VP-(DBSA), of the homopolymer atactic pd§-vinyl rophase and microphase separations. It turned out that this
pyridine) (P4VP and the surfactant dodecyl benzene sul-approach gives the real dependence of the long space period
fonic acid (DBSA). Here, owing to the very strong interac- L of the ordered structure on the oligomer/monomer ratio in
tion, the temperature domain of microphase separation is n@he system, however, as the fraction of hydrogen bonds
bounded from above by association effefs2]. The pecu-  monotonically decreases with increase in temperature, the
liarity of the systems of this type, being polyelectrolyte- increasing temperature dependencel¢T) obtained is in
surfactant complexes, is that the long space structure periaghntradiction to the experimental ddtd. This inconsistency
is an increasing function of the number oligomer/monomelis caused obviously by the roughness of the random phase
ratio x (the number of DBSA groups per pyridine riag\  approximation used for description of the hydrogen bonding.
more complicated behavior is inherent in the hydrogen To avoid this limitation, our approach is based on
bonded systems which were considered to study the oppositie above mentioned analogy between associating
Weak-bonding ||m|t[3—5] Here, the weak interaction causes homopo|ymer-o|ig0mer mixtures and random comb C0p0|y_
an order-disorder transition to a homogeneous highmers taking into account the varying number of oligomers
temperature state. An example of these systems is given byttached to the main chain stochastically. Such a system can
the mixture P4VP-(PDR)of the same homopolymer P4VP pe analyzed in terms of the random walk statistics to apply
with 3-pentadecyl phendPDP) being the oligomer. In this  the field theoretical schenjd1] for the development of the
case, unlike in the ionic bonding systems, the long spacenicroscopic theory. The cornerstone of our approach lies in
period decreases whileincreases. Intermediate behavior is the assumption that the alternation of the homopolymer as-
exhibited by the system P4VIZ2n(DBS),], with the oligo-  sociative groups with and without oligomers attached is like
mer being zinc dodecyl benzene sulfonate Zn(DBSJhich  the alternation of the segments of different types along the
forms transition metal coordination complexes with thechains of a random heter0p0|ymer to be represented as a
monomers of P4VH2]. lonic bond weakening due to the stochastic variation of the Ising spin, for which the role of
absence of covalently bound charges along the homopolymemaginary time is played by the number of chain segments
chain leads here to a nonmonotonic form of thelepen- [12-14.
dence of the long space period. Along this line, the problem under consideration is di-

Principally important for our consideration is the decreas~ided into two parts, the first of which is reduced to the
ing form of the temperature dependence of the long spacgetermination of the relation between the long space périod
period for all the above systeni2—5]. However, such char- and the average fraction of hydrogen bontisvhereas the
acter of the dependence appears in hydrogen bonded systegiscond one is focused on the determination of the frequency
only within a finite temperature interval bounded by the glass, =2 #X in the distribution of the oligomer heads along the
transition temperaturély from below and order-disorder homopolymer chain. The first part of the problem was stud-
transition temperatur&; from above{3,4]. Here, an increase jed on the basis of the simplest modB] that is reduced to
of the oligomer/monomer ratia leads to a nonmonotonic the treatment of the dependenEg,(L) given by the first
behavior of the temperaturé. with a maximum near the term of the free energgl). Corresponding consideration de-
point x=0.85, deviation from which narrows the tempera- veloped within the framework of the strong segregation limit
ture domainT 4—T.. This domain is the region of our interest derives to generic relatiotA8) for the dependencé (w)
where a purely microphase separated structure is possiblgsee Appendix A In this paper, we focus on the second
Below the glass transition temperatufg the crystallization  problem to be related to the definition of an optimal fre-
of the oligomer chains occurs that causes a reduction of thguencyw that minimizes the second term of the free energy
overall volume of the system and a sudden decrease of tha) within the framework of the weak segregation limit.
long space perio4]. The formal basis of our treatment is the field theoretical

Microphase separation phenomenon had been extensiveheme of stochastic systems, making use of the supersym-
studied in the past two decades for a variety of polymeimetry field [11]. Conformably to the polymers, this theory
systems including random heteropolymg8s-10]. Theoreti-  \was proposed in Ref15] and developed for the random
cal studies of the homopolymer-oligomer mixtures, being thecopolymers in Refs[12—14. Our approach is based on the
systems of associating polymers, were proposed by Tanak@artin-Siggia-Rose method of the generating functional
etal. [6] and Dormidontovaet al. [7] within the random [16]. Power and generality of the supersymmetry field
phase approximation introduced by Leiblg8]. Here, the scheme were demonstrated for the Sherrington-Kirkpatrick
total free energy model for which they are identical to the replica approach

[17]. The formal basis of the supersymmetry is a nilpotent
Ftot=Fhot Fnp (1) quantity which represents a square root of 0. In this sense,
the superfield is similar to the complex field, in which the
is written as a sum of two termBy,, related to the nonasso- imaginary unit, being square root ef1, is used instead of
ciated homopolymer-oligomer mixture afkq,, attributed to  the anticommuting nilpotent quantity being the Grassmann
the hydrogen bonding. Then, making use of minimizationvariable. By definition, the supersymmetry field combines
principle with respect to the dependence of the free energthe commuting boson and anticommuting fermion compo-
Fiot On the average fraction of hydrogen borXipresent in  nents into the unified mathematical construction representing
the system, permits to find the temperature depend¥(i€e  a vector in the supersymmetry space. Choice of the optimal
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basis of the supersymmetry correlator yields in optimal way N N

the advanced/retarded Green functions and the structure fac—S{C(n)}Ef L(c(n),c(n))dn, R= EJ (c(n))%dn,

tor to obtain microscopic expression for the frequeacy 0 0 3
The paper is organized in the following manner. Section I

contains initial relations of the field scheme used to write theyeing defined by the Lagrangian(c(n),c(n)) and the

system Lagrangian. It involves the effective potential energ\yamping coefficien®, respectively. The total actiof=K
whose quadratic term describes hydrogen bonding between j js determined by a “kinetic” contributiof of inhomo-
the oligomers and the associative groups of the homopolygeneity in the oligomer distribution and “potential” compo-

mer chains, whereas cubic and biquadratic terms relate to thgsnt 1=V, +V caused by the interaction between the ho-
self-action effects. The principal peculiarity of our approachmgopolymer and the oligomer,

lies in accounting of the inhomogeneity in the distribution of

oligomers along the homopolymer chains. This accounting is T (N )

caused by the introduction of the effective kinetic energy VO:TEJO (c(n))=dn, 4
whose density is proportional to the square of the derivative

of oligomers distribution over segment numbexsDue t0  5nd self-action contribution

the temperature dependence of the hydrogen coupling, re-

lated effective mass is a fluctuating parameter whose averag- N woa N,

ing, along the Hubbard-Stratonovich procedure, arrives at the V=Tf v(e(n)dn, v=Zret+ rct ()
biguadratic term with respect to the time derivative. Accord- 0 ' '

ing to the calculations given in Sec. IV, just this term, beingpere T is temperature measured in energy units, faetor
considered within the mean-field approach, causes decayingermines the strength of the hydrogen bonding, multipliers
character of the temperature dependeb(€) of the struc- w, \ are self-action parameters.

ture period. Complication of the problem arising from the” |, comparison with the above standard approach, the de-
determination of the proper frequenay is caused by an termination of the contribution of inhomogeneity along the
essential nonlinearity and coupling the advanced/retardegob,meriC chain is a much more delicate problem. Indeed,

Green functions and the structure factor. Hence, it is Methe pare magnitude can be written in the form of the usual
thodically convenient to use the supersymmetry techniquginetic action

that enables to obtain in the simplest way explicit expres-

sions for above functions in the long-range lintiee Sec. m (N/dc)?
1. The divergency condition of the Green function permits KITEJ (ﬁ) dn (6)

to find the proper frequency with accounting self-action 0

effects within supersymmetry perturbation theory. A COM-\ here an effective mags appears as a temperature fluctu-

parison of the dependencies obtained with experimental datﬁing parameter with mean vali@ and variancm

given in Sec. V shows that the scheme developed allows to~ >

. i . — =o° (bar denotes the average, as usulthen, after averag-
present in a self-consistent manner the main peculiarities olﬁ exponent exp(K/T) over the Gaussian distribution of
the microphase separation in the homopolymer-oligomer Syst'hg bafe masm, we obtain the effective kinetic action in the
tems with associative coupling. '

following form:

Il. GENERIC FORMALISM — - — m (N
K=K+K, KETif (€(n))dn, (7)
0

The problem under consideration is addressed to the defi-
nition of the effective law of motiore(n) that determines a
sequence of oligomer alternation along the homopolymer K
chain. This is accomplished by means of specifying the oc-
cupation number, being(n)=1 if oligomer is attached to
the segmenh andc(n) =0 otherwise(obviously, the mean As a result, total action takes the final form
valuec=c(n) of the occupation number is reducedxat _ 5
the oligomer ratiox<1, while’c=1 for x>1). When the S=TTJN(C(n))2dn—TU—fNfN('c(n))Z((':(n’))zdndn’
index of the homopolymer chali— «, the argument may 2J)o 8 Jo Jo
be considered as a continuous one, and we are ventured to

start with Euler equatiop18] _ ZJN 24
T2 . (c(n))“dn—V, 9

o? (N (N 2 2 ,
_T?fo fo @©(M)AE(n))2dndn. (@)

0S_d 5S_dR (2)  where self-action potential is given by Eqgs(5). Respec-

6c dngse s tively, Euler equatior(2) arrives at the equation of effective
motion
where the overdot denotes derivative with respect to the seg-
ment numben, actionSand dissipative functiond® take the (m—X)e+ (':+ ro=—p' (10)
usual forms T '
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where one notices effective motion in the phase space is determined by the
system
/_T_]_&V{C(n)}_ﬁv 'A-'_ UZJN(- ’ )Zd ’
v= s aer AT 7, ©)dn’. e +n.e=—(rc+v’)+(ng tp), (22)
(11)
mp—nep=—(7+v")p. (23

By introducing the effective mad®, characteristic number
of correlating segments, and §-correlated sourcé(n) in

accordance with definitions A comparison of the first of these equations with Etg)

shows that the conjugated momentprappears as the most

5 ® probable value of the renormalized noise amplitagdé&[14].
Mm=m-A, Ne==, (12
lll. SUPERSYMMETRY REPRESENTATION OF
(Z(n))y=0, (Z(n)¢(n"))=8(n—n"), (13 CORRELATION IN OLIGOMER DISTRIBUTION
one obtains Langevin equation of inertial type, Equations(22) and (23) represent a system of nonlinear
equations whose solution demands a use of the perturbation
mc+n,.=—(7c+v’)+ <. (14)  theory with respect to the self-action parameterg:. and of

_ . the self-consistency procedure to determine an effective
Making use of the field schenjé1] allows to express the massfi{c(n)}. However, because we are interested in the
noise( in terms of an additional degree of freedgnibeing knowledge not of laws of motion(n) andp(n), but only of

the momentum conjugated to the effective coordimatéol-  the frequency of oligomer alternation along the homopoly-
lowing this line, one has to introduce the generating funcmer chain, it is appropriate to restrict ourselves to an inves-
tional tigation of the corresponding correlators. These reduce to
8¢ autocorrelator, retarded and advanced Green functions de-
zic(ny=( [T s{me+n.e+ rc+u’—§}de* ~ > fined by the following equalities:
n
(15 S(n—n")=(dc(n) c(n’)),
being the average over the noisgn) where é function ac- N ,
counts for the equation of motiofi4), and the determinant G-(n—=n")=(sc(n)p(n")),
is Jacobian of transition frond(n) to c(n) that is equal , )
©/T=n,. Then, making use of the functional Laplace rep- G.(n=n")=(p(n) &c(n"));

resentation
i sc(n)=c(n)—c, c=c(n), (24)
sixt)= [~ e~ [ px dnfopm, a9 o | |
—ioo respectively. As is demonstrated in Appendix B, consequent

] ) ) analytical consideration takes a canonical form if one intro-
over a ghost fielgh(n) and averaging Eq15) over Gaussian duces a dual fielfi12—14

distribution

1 ¢=sc+(ng 'p)d, (25)

Pocmyexd 5[ Zmon|, an _ _ .
being built by making use of nilpotent variabl& which

being related to Eq913), we derive to the standard form satisfies the conditions

[11]
92=0, 99 =99, f d9=0, f 9 do=1.
zic(m}= | Plotm) p(miDp(), =S (19 28
As a result, the correlator®4) are reduced to the com-
S{C(n),p(n)}EJ L(c(n),p(n))dn, (19 ponents of the supercorrelator
where effective Lagrangian is introduced, C(z,2")=((2)p(2")), z={n, I} (27)

L=(Me+ne+rc+u)(ng'p)—3(ng'p)% (200 of the state vector5) in the phase space. Indeed, the su-
) _ percorrelaton(27) appears as a pseudovector
According to Euler equationsl 9]

C=G,A+G_B+ST 28
oL d oL d? oL 0 - 21 * @8
————+——=0, x={c,p},

ax dngx  dn? ox P spanned on set of the orts
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TABLE I. The table of the functional product of vectqi9).

INT T A B

T 0 T 0

A 0 A 0

B T 0 B
A(9,9)=9, B(9,9)=19", T(99)=1. (29

Introducing the functional product of some vectetsy, Zin
such a space,

X(ﬂ,ﬁ’)=J Y(9,9")Z(9",9")dd", (30

PHYSICAL REVIEW E 69, 021803 (2004
GO=[r(v)*ingw] 4,
SO=GOGO=[2(v)+n2»?] 1. (37)
An explicit form of linear operator
L=L,A+L_B+LT (39)

obeying the equality. =(C(®) ! will be needed below. Us-
ing the equality{12]

c =G 'A+G_B-GI!sG'T, (39
we easily obtain the components

L.=7(v)xing,y, L=-1 (40)

it is easy to see that ori®9) are noncommutative to obey
the multiplication rules given in Table I. Thus, making use of ~ To proceed, let us consider the effective interaction term
the supercorrelatof27) presents a big advantage in analyti- in action(9),
cal calculations.

Under suppression of the inhomogeneity fluctuations
along the homopolymer chaitr=0), the action(19) with
the Lagrangiar{20) written within the harmonic approxima-

dv,d
- —f f (’; )’fvivzlcwl)lzlcwz)lz, (41

tion [v(c) =consi takes the canonical form

Sofé(2)}= fd)(Z)L(Z)cﬁ(Z)dz (31
with the linear operator
52
L(z)=7(n)+D(2), r(n)=r+md;, dh=—
an
(32)
d d )
D(z)=— (919+n° 1- 21‘}{919 o (33

As shows the consideration in Appendix B, this operator dey

fines the bare supercorrelator

taken in the frequency representation. Within the mean-field
approximation, one has

lc(vo)?[e(w2) 2= (| c(va)[)]c(v2) [P+ c(v) K] c(v2)]?)

=S(vy)|c(vp) |2+ ]c(v1)|*S(v,)
(42)

and the fluctuational component of the inhomogeneity action
(41) takes the form

/C{¢}——TAfd—v2|¢(V 9)|?9d 9, (43)

Where parameteA given by Eq.(11) reduces to averaged

magnitude

CO)=L"Y(2)8(9,9"), 8(9,9)=9+9" (34
dv dv
, o Azazf—yzsw):a"lj—VZC(V,ﬂ)ada. (44)
to be governed by the Dyson equatits¥). Taking into ac- 2@ 2
count condition(B7), one obtains .
As a result, the bare mass in the actionS, given by Egs.

© [7(n)—D]8(9,9") (31) and(32) is replaced by the effective quantity
c¥= . (35

72(n)—nZg2

Me=M—A, (45)

Using Fourier transformation over the frequengywe ob-

tain the expression being averaged value of the fluctuating mék2).

To finish supersymmetry representation of the actit®)
defined by the Lagrangiaf20), one should add to Eq§31)

co— 1+[(»)—in Ver[T(V)JF'n Vw, and (43) the self-action term
(v)+n?
T(V)ET—mvz. (36) V{d)(Z)}:f v(¢(2))dz, z={n,d} (46)

Then, taking into account Eq&8) and(29), we get standard with the expansion(5). Then, the standard perturbation
equalities for the main correlators theory gives the symbolic expressifil]
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TABLE II. Conventional multiplication table of the Grassman within the hydrodynamic limit=v/ws<1, ws=7/n,.

A, B and non-Grassmah quantities[see Eq.(29)].

T(9,9") A(9,9") B(9,9")
T(9,9") T(9,9") A(9,9") B(9,9")
A(S,9) A(,9") 0 0
B(9,9) B(9,9) 0 0
2 2
2(0q,9,,n)= E(C(l‘}l,ﬁz;n))2+ ﬁ(c(’ﬂl’ﬁz;n))s
(47)

for the self-energy functio (94,9,,n) defined by the fol-
lowing equation for then-point dressed supercorrelator

CO(9,8")= J J CO(9,9)3M(91,0,)

As shows the consideration in Appendix B, self-consistent
behavior of the system is described by the generalized Dyson
equation

cl=L-3. (54)
In the component representation this equality arrives at the
equations

S=(3-L)G,G_, (55)

Gil=L.-3.. (56)
Combination of Egs(40), (52), and(53) arrives at the final
equations for main correlators within the hydrodynamical
limit &<1,

)\2
-1_ | _ 2031 ,,2 4 20 \—1
X CO(9,,9")d9,dD,. 48) SR L E GTHCH_' 7+ (87Ne)
However, detailed analysid7] shows that the multipli- 5 A2 Mgs R
cation rules given by Table | have to be replaced by the rules X| uot 32 §— 5 —(47°n¢)
of Table Il. Then, the components of the pseudovector e ¢
2 2
S=3,A+3_B+3T (49) M_+’\_)]§z_ 57)
_ 22 2x3%m,
take the following forms:
2 g To avoid misunderstanding, we would like to discuss the
S(v)= '“_f ﬂS(vl)S(v— V1) physical meaning of the limitation caused by the use of the
2 ) 2w hydrodynamical limit. It might seem that its application cre-
5 ates obstacles in the way of description of the mixtures with
N X_f J dv,dv; S(v0)S(v2)S(v— 11— 1) high magnitudes of the oligomer concentrations1. How-
6 (2m?2 YT o2 ever, it would be right if we have used correlators of the
microscopic oligomer numbeis(n) itself, while definitions
(50 (24) give the correlators in terms of the deviatiods(n)
dv =c(n)—c from t_he mean value [23]. This means we es-
Ei(V)ZMZJ —18(1/1)Gi(v— V1) cape the necessity to average over small scales because fluc-
2m tuations in Eqs(24) correlate essentially only within weak
) segregation limit related to the hydrodynamical domain.
N dvq,dv,
+ 7[ f 5 S(v)S(v2) G (v—r1—vy).
(2m) IV. DETERMINATION OF THE PERIOD
(51) OF MICROPHASE STRUCTURE

Making use of the theory of residuésee Appendix Cwith

the correlatorg37), where the frequency dependent param-

eterr(v)=7—mp? is replaced by the bare one one arrives
at the equalitie$C5) and (C6) which take the form

2 2 2
M A
S=(87%ny) M| | i+ - =+ 2|,
SR | Ep vy Py
(52)
A2\ \?
- -1 2 — | 2
So=(47ny) Y | w2+ 6rnc)+2 w +32mc>§
2 2
M A 5
=+ — 53
22 2><33mc)§1 53

Our consideration is based on the obvious equality for the
long space period =21 +D wherel is the oligomer chain
length, D is the thickness of the homopolymer layer being
fixed by the inverse shar¥ ™! of average number of the
hydrogen bondsgsee Fig. 1 Physically, this value is reduced
to the magnitude 2/ determined by the circular frequency
o in the alternation of the oligomer heads along the ho-
mopolymer chain. Then, the long space period is expressed
by the following equality{5] (see Appendix A

L=2I+Dow !, Do=2mxn"¥)b=b, (59
wherexy=10"1 is the Flory parameten~ 10 is the number
of segments in oligomer chain, ads the segment length.

To obtain the frequencw, one has to determine first the
effective masan,; given by Egs.(45) and (44). Using the
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theory of residuegsee Appendix Cwith the structure factor 104
(55) and Green functio57), one arrives at the renormaliza-

tion mass parameter 094

o? 1 neu? 1 \?

T om on. >5
2mgen, 2° mg; 23x3% Pmy

A , (59 081
X

0.7 4
where only the terms of the second order of smallness ove

the parameterg,\ of the self-action(5) are kept. Inserting 06 T
here Eqs(12) and(45), we obtain the equations for determi- <0
nation of the effective mass as a function of the temperature ' 02 004 00 00
- | 0 5IO 160 150 2CI)0 zéo 3('30 3&0
Mes=pm,  p=pu(T), (60) T (K)
T a+pBIT FIG. 2. Temperature dependence of the inhomogeneity param-
Ap(l—p)= T 1+ ) (61 eter u for different values of the self-action parameter thick
c0 K curve relates tax=0, thin one relates ta=0.08 (T ;=337 K).
where Inset: the temperature of order-disorder transiflgrvs the param-
etera.
T_m2 1 _10u? 4
o) 20 T Am P Fi

(62)
The resulting dependendg on the self-action parameter

B allows us to estimate the influence of the self-action on th s shc_)wn in the inset of Fig. 2. Itis .principally important that
effective mass. It turned out that even small variation of thenherrb'v%g?r ttue Vflrl:]e OI tther Secllf'?r(]:t'lon ?rarmeif[htﬁ mcr)r:?-
parametera substantially changes the shape of the depen—a ow IS the temperature do aﬁf c Where the m
denceu(T), whereas the parametgralmost does not affect crophase separated structure is poss%ga_t(elng a glassing

it, and we can puB=0 for the sake of simplicity. This means tempergtu.r)a In other words, the self-action effect leads to
physically that the cubic anharmonicity in the self-action po_the shrinking of the region of the ordered structure because

tential energy(5) is irrelevant to the microphase separationthe quthal temperaturé’c reaches the bpundary magnitude
phenomenon. T4 with increasing ofa before the magnitude=0.08.

. ey 71_ .
The smallness of the self-action parameterg allows us The divergency conditio®_"=0 of the Green function
to solve Eq(61) analytically. In doing so, one has to replace (57) gives the proper frequency

Numerical solution of Eq(61) for different values ofx and

the required dependengg(T) in the right-hand side of Eq. N ) . 5
(61) by the bare dependence Vo= ToTlw, 0=NOT® (66)
1 T of the oligomer alternation along the homopolymer chain.
wo(T)= > 1+\/1— T_> (63) Real and imaginary parts are determined by the expressions
c0
. . : . wo 9 T2
which is a solution of this equation at=8=0. As a result, wo= 1+3a| 1- 2= ||,
we obtain the simple dependence Vu(T) 8715
1 [,_ T oo T 3712
T==(1+ 1——) 64 =202 90 S
u(T) 5 T (64) w= T 1+6a 1+8TS , (67)
with a characteristic temperature where the dependengg T) is defined by Eqs(64) and(65);
T.=T.o(1-2a) 65) the effective mass in parentheses after the fagt@nl is put
c= teo\+7 )

to be equal to the valum/2 related to the critical tempera-
ture T, characteristic scales of both frequency and tempera-

where the scalf is given by the first of Eqs(62) [the ture are introduced as follows:

multiplier should be pujug(Tco)=1/2 due to the smallness

of the parameteww<<1]. According to Eq.(64), with the

increase in temperature, the effective mé88) decreases — _ \/7 T.= 0 68
. _ — wo= p—} 0= —- ( )

monotonously from the bare magnitudeat T=0 to m/2 at 2Jmr

T=T. (see the main panel in Fig).ZThe critical temperature
T. determines the point of the order-disorder transition acAs a result, combination of Eq&8), (66), and(67) leads to
cording to the condition the final result for the long space period
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w(T)
L=2l+ 294
Vu(T) = (To/T)? e DBSA
9 ] o Zn(DBS),
1+8(To/T)%+ Z(TO/T)’Z 2 281
x| 1+ —a Lo, (69 =
2 1-2(To/T)?
2.7-
where the characteristic lengtho=Dq/wo~ Vm/7x%
x y®N2 is the function of both parametegsandN being
thermodynamically independent. Thus, the first of the expo-
nents in the scaling relatiohy> x2N® takes the magnitude 26 02 04 06 08 o
a=1/6 inherent to the strong segregation regime, wherea:s ' ' “x ' '

the second oneb(= 1/2) is the same for the weak oh20]. o
Note that the obtaineg dependence is caused by the multi-  FIG. 3. Long space period in the strongly bonded systems as a
plier x® in the generic relatior58) that is relevant to the function of the oligomeric fractiox. Solid lines represent the re-

former of the above regimes, while the method develope@uns of fitting in accordance with E@69). Experimental data for
addresses latter one. P4VP-(DBSA) (®) and P4VH-Zn(DBS),], (O) at room tempera-

ture are taken from Ref5].

V. DISCUSSION M=mo+AX(Xy—X), 7=7o+Bx(x,—x) (73

The behavior of the system under consideration is con-
trolled by the parametens, 7, ando which determine the with positive constantsng, 7o, A, B, X, X, to be deter-
temperaturel ;. of the order-disorder transition and the long mined. Then, the fitting of the experimental results shown in
space period. given by Eqs.(65) and (69), respectively. Fig. 3 in accordance with Eq69) wherer, m are given by
Moreover, there is the self-action parameterd®<1 whose Eq. (73) leads to the following results for the ionically
value is limited by the magnitude,,«=0.08 (see inset in  bonded systems.
Fig. 2. To guarantee positive values of the radicand in Eq. The mixtures P4VP-(DBSA).
(69) at the critical temperatur@., the above parameters
have to be constrained by the condition my=18, A=8, Xx,=L1.5;

k=2 (70)

limiting magnitudes of the principal parameter

70=0.6, B=15, x,=1.0;

T

a«=0.01, b=1 nm, [=10 nm. (74
_TC_\/_ m) 2
K=g =N ) (1=2a). (71) The mixtures PAVRZn(DBS),], :
The minimal magnitude ok fixes the choice of the theory my=>5.3, A=26, X,=1.6;

parameters according to the condition
70=0.8, B=0.1, x,=1.0;

o=<2"YAmArV41 — a). (72) 4
It would seem from Eqgs(70) and (71) that the decrease of «=0.01, b=1 nm, =10 nm. (75
the critical temperaturd, with passing from the ionically
bonded systenisuch as P4VP-(DBSA) to the hydrogen At x=1 one obtaingn=22, r=0.6 for P4VP-(DBSA) and
bonded onele.g., PAVP-(PDR] is caused only by the m=20.9, 7=0.8 for P4VPEZn(DBS),],. Then, Eq.(71)
growth of the fluctuation parameter with respect to the gives valuesc=10%, 107 at o=1.31, 4.18, respectively.
mean magnitude of the inhomogeneity parameterlt ap- A much more complicated situation occurs in the weakly
pears, however, that the main reason for such behavior isonded system P4VP-(PDP)Here, decrease of the param-
given by the decrease of the mean-geometrical magnitudeter(71) results in the narrowing of the temperature domain
Jm7 of the principal coefficients in the generic LagrangianT,—T. of the phase separation. All parameters for this class
(9) (see below. of systems can be determined by the combined fitting of a
To clarify this problem and find explicit form of the de- series of experimental data for the critical temperaftige
pendencies of the temperature of order-disorder transition and the long space peridd(see Figs. 4 First constraints
and the period. on the oligomeric fractiox, we assume for follow from the comparison of experimental points for the
main theory parametens and 7 the three-parametric rela- temperaturel; of order-disorder transitiofsee Fig. 4 with
tions, fitting results based on E@65) at «=0.01,1=10 nm:
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FIG. 4. Order-disorder transition temperatdrgfor the weakly FIG. 6. Temperature dependence of the long space period in the

t_>onded system as a function of the o_Iigomeric_ f_ract{(on'he ;olid weakly bonded system. The solid line represents the dependence
line represents the dependence obtained by fitting according to Edbtained by fitting according to Eq69). Experimental data for

ESJS) Experimental data for P4VP-(PDP)M) are taken from Ref. P4VP-(PDP) at x=0.85 (O) are taken from Refi4].

As a result, takingmyg=1 at x=1 the magnitudesA
®m3_ A B =0.155, ®=23.87, 0=0.206 are obtained to provide an
2~ 062, m_0_0'155’ Xm=1.615. (76) extremely small value=5.6x 10" 2 of the hydrogen bond-
ing strength and the temperature scdlg=160. At «
=0.01 this arrives at the rest of the parameters2.07, \
=6.22x10 .

It is worthwhile to discuss separately the dependence of
the long space period on the oligomer/monomer ratio at the
Mo B temperaturdl =80 °C that relates to the monotonous decay-
—=1499, —=7.968, x,=1.926. (77 ing curve shown in Fig. 5. Because the maximal temperature
o o of the order-disorder transition &~ 65 °C, corresponing to
x=0.85 (see Fig. 4, experimental data related ©o=80°C
are obtained for the temperature being beyond of the region
8‘# the ordered structureT¢>T.). From the physical point of
view, at the critical temperature= T the periodicity of the
microphase separated structure formed is caused by long-
range correlations, whereas @&=80°C only short-range
correlations hold to be determined by the homopolymer
backbone together with the hydrogen bound surfactant mol-
ecules[4]. Fitting of the experimental points for the depen-
dencelL (x) at the temperatur& =380 °C can be done on the
basis of Eq(69) where one putg(T)=u(T.)=1/2. Then,
the values of the parameters obtained differ from those ob-

o

The following parameters gives application of E§9) for
the long space period at the temperatlire T to the data
shown in Fig. 5 as the nonmonotonous curve:

Finally, making use of the expressio®9) and experimental
data for the temperature dependence of the long space peri
given in Fig. 6 yields the last constraint

=024, (79)

4.8

4.4 tained forT=T, by the following constraints:
T
NETY 5 42 327 543 (79
= —=42, X,=3.277=—==543.
o) VMo 7o

3.64 Obviously, this difference is due to the temperature depen-

dence of the hydrogen bonding parametén the potential
T T T T T T T T T T T T T energy(4)
0.0 03 06 0.9 12 15 18 241 To conclude our estimations, we notice that the model
* developed explains successfully a vast variety of peculiari-
FIG. 5. Long space period in the weakly bonded systems as H€S obtained experimentally for various classes of

function of the oligomeric fractiorx. Solid lines represent the re- homopolymer-oligomer mixtures with the interactions of dif-
sults of fitting in accordance with E¢69). Experimental data for ~ferent strength. The data obtained for strong, intermediate,

P4VP-(PDP) at temperature of order-disorder transitidp (M) and weak coupled systems P4VP-(DBSA) P4VP-
and at temperaturé=80 °C () are taken from Refl4]. [Zn(DBS),], and P4VP-(PDR), respectively, are given in
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TABLE Ill. Theoretical results for three types of homopolymer- Apart from the above difference in the nature of the inter-
oligomer systems involving weak, intermediate, and strong interacactions, one needs to emphasize at once the difference in the
tions (see the text approaches used: the mixture of nonassociated homopoly-
mers and oligomers had been studied within the strong seg-
P4VP-(DBSA)  PAVP{Zn(DBS)], P4VP-(PDP)  regation limit[5], whereas for the consideration of the hy-

18 53 1.000 drogen bonding we use the opposite approach. This

210 8 26 0.155 difference is kept if the Flory parameter takes large values
. 1 i )

X 15 16 1615 )_(slo , Whereas the hydrogen bonding strength is rela-
= 29 20.9 1,095 tively sma_ll (r<1). Inde_ed, the_z f_ormule(58) for_ the_ long
. 0.6 08 6.6K10-4 space_penod was obtalngd WIthII:’I the approximation of the
5 1e 01 & 3103 sharp interface, whose thicknessiis- y~¥%b=3b to be rel-

: : ' evant to the strong segregation regif®é. In the consider-
Xr 1.0 1.0 1'92?3 ation presented, we have focused mainly on the study of the
T 0.6 0.8 5.6¢10 hydrogen bonding on the base of the acti®hthat has the
o 131 4.18 0.206 form of series in powers of the order parameteand its
a 0.01 0.01 0.01 derivativest. Such an expansion supposes making use of the
A 3.33 6.66 6.2X10°° weak segregation limit corresponding to the small values of
0(K) 10° 10° 23.87 the parametere and 7.
Teo(K) 1.41x10° 1.25¢10" 337 Finally, it is worthwhile to discuss a difference with an
Te(K) 1.38x10° 1.22¢10" 331 usual picture of the phase transitions that is caused by the
To(K) 138 122 160 self-consistency conditiofd4). A critical value of the Flory
K 10° 107 2.07 parametely. in usual copolymers is known to be caused by
I(nm) 10 10 10 the self-action effects. Accounting for these effects involves
b(nm) 1 1 1 replacement of the bare paramegerby the renormalized

value y — x. [10]. However, in our case the value of Flory
0parameter is so large that the temperature of the separation of
nonassociated polymer-oligomer mixture is negligibly small.

well as the crucial decrease of the hydrogen bonding paranf:S @ result, the role of passes to the hydrogen bonding
eterr and the self-action parameter on the one hand, and Parameterr which does not relate to the tendency of mono-
the characteristic temperaturgs and®, on the other hand. Mers of the different kinds to avoid each other. However, as
According to the relation§71) this leads to extremely large 1S Shown by the considerations given in Re#,7], under-
suppression of the value of the parametethat causes the standing of the whole picture of microphase separation, in-
crucial shrinking the temperature interval of the microphaseluding the temperature dependence of the structure period,
separation. An analogous effect is caused by the self-actiodemands accounting for the inhomogeneity in the distribu-
increase. tion of oligomers along homopolymer chains. Within the ap-
To avoid misunderstanding, we would like to stress aproach developed, this is reached by means of the effective
composite character of the approach used. As it is mentionekinetic energy(6), with the mass fluctuating due to the tem-
in Introduction, this circumstance is expressed by dividingperature dependence of hydrogen bonding. This dependence
the total free energyl) into two terms, the first on€,,is  leads to the reductio45) of the effective massng¢ that
relevant to the nonassociated homopolymer-oligomer mixcauses a phase transition from stochastic to periodic distri-
ture, the second orfe,, is caused by the hydrogen bonding. bution of the oligomers along the homopolymer chain. How-
These terms are caused by the interactions of principally difever, if the critical point is fixed usually by the condition
ferent physical nature: the behavior of the mixture of nonasMes=0 [11], in our case the critical temperatufg relates to
sociated homopolymers and oligomers is determined by ththe finite magnitudem,;=m/2 of the effective mass which
Flory parametery, characterizing unfavorable interactions has a singularitydmg¢/dT=—o in the temperature deriva-
between the oligomers and the rest of the system; the teniive (see Fig 2.
perature induced distribution of hydrogen bonds is deter-

Table Ill. It is seen that the coupling weakening gives rise t
a decrease of both inhomogeneity parameterand o, as

mined by the parametet, giving the strength of this bond- ACKNOWLEDGMENTS
ing. From the formal point of view, both of the above
contributionsF(x,¢) and Fy,(7,X) should have similar Financial support by the Grant Agency of the Czech Re-

dependencies on the state parameters b@pgrt from the public (Grant No. GAQR 203/02/0658 is gratefully ac-
temperaturgthe volume fraction of the homopolymer for ~ knowledged.
the first contribution, and the oligomer/monomer ratior

the second one. Because the tdfy~ x$(1— ¢) involves  \popypix A: DERIVATION OF A GENERIC RELATION
the parabolic dependence on the parametdoounded by FOR MICROPHASE STRUCTURE PERIOD
maximal value =1, we took generalized parabolic ap-

proximation(73) for the dependence of the hydrogen bond- Following Ref.[5] we suppose the period of the mi-
ing strengthr on the oligomer/monomer ratiwwhich may  crophase structure to be determined by the minimum of the
take values<>1. specific free energy
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1 Fint+Fser 12
f=;— 5 V=Ls L=21+D, (A} %+FD2
fo —————, (A5)
related to the first term in Ed1). Being the free energy of [1+(B/\)n]b
the homopolymer-oligomer mixture, this term consists of theyhere numerical coefficients are dropped. The minimization
interfacial and stretching componetfits,, Fs measured in  condition9f/dD =0 arrives at the steady-state values of the

the temperature unit§ per domain volume/ (according to homopolymer layer thickness and the oligomer length
Fig. 1L, |, andD are the long space period, the length of the

oligomer tail, and the thickness of the homopolymer layer, y1/6
respectively;Sis the domain surface area D~=2\, 21~( Y6n23)p. (AB)
The interfacial free energy is stipulated by the loss of n

conformational entropy caused by the localization of the ho- . .
It is convenient to express the above results by means of

mopolymer chains within the interface of thickness Due i ) . :
to unfavorable interactioy between the oligomer tails and the dimensionless frequengy of the oligomer alternating
along the homopolymer chain:

the polymer layer the chains form up loops containing seg-
ments of numbeA ¢~ x ! [21]. Then, within the model of >

. . . . a
the random walk, the interface thickness is estimated by the 0= ——=OmaX, Oma=27, X
relations A=\ (b?~b? y whereb is the segment length. AMb
Respectively, the interfacial free energy,=MT is deter-
mined by the numben;=SA/N b* of the loops within the
interface. As a result, we obtain the estimation

. (A7)

I
> o

where X is the averaged oligomeric fraction per homopoly-
mer. So, the long space period of the microphase separated
structure takes the form

1/2

2
Fini~ );_ZTS' (A2) LEZI+D2X1/6n‘1’3(n+Z)b. (A8)

APPENDIX B: INTRODUCTION TO THE

Another additionF;, is caused by the stretching of the SUPERSYMMETRY FORMALISM

surfactant side chains, whereas the stretching of the ho-
mopolymer chains enlarges only the volume part of the free By analogy with the complex calculus, known conve-
energy. This addition is expressed by the simple equalityience of the supersymmetrical calculus is based on a possi-
Fsuw=NcnsF1 where the first facton;=DS/Nb® gives the  hility to lick relevant expressions into a canonical shils.
number of chains per layer, the second multiplief In so doing, we write out in the Lagrangi&R0) of the Eu-
=(b/\)N is the number of the oligomer molecules per chainclidean field theory the kinetie and the potentialr ener-

of N segmentsX is period of the oligomers alternating along gies:

the chain and the last factoF; ~ (12/nb?) T presents the free

energy of stretching a side chain msegments to a length L=k+m, (B1)
Combining the above multipliers, we find the estimation for
the total free energy of stretching k= (ME+n.e+ 7c)(n; 'p)—3(n_ 'p)?, (B2)
dv
1°DS m=n_1—p (B3)
Fsy~—-T. A3 ¢ ac™
BTN (A3)

To derive the kinetic energy in the canonical form type of

To derive the explicit expression for the dependence ofd- (31),
the free energyAl) on the layer thicknes® we need to use

an obvious condition BB=N_ngws where vg=nb? is the 1 _ _ &

volume of the surfactant molecule. As a result, we obtain the “~ 2 AL p(d)dd, L=| 7+ mﬁ +D,

relation (B4)
21 b we need to find the supersymmetry gener&es D (). In
D= Xn’ (A4) general case, it is represented in the following way:

J J
according to which the periodl defines the rest of the geo- D=a+tbzg+cd+dd g, (B5)

metrical characteristics of the microphase separated struc-
ture. Inserting Eqs(A2)—(A4) into Eq. (Al), we obtain the where the coefficients, b, ¢, d are functions of the deriva-
final expression for the interfacial free energy: tive 9/dn. Substitution of expressiori25) and(B5) into Eq.
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(B4), taking into account Eqs(26), leads to the required
expressionB2) with the values

(B6)

—n b 1, c=0d=-2 i
a—ncan, =—1, c=0d=—-2n.—.
As a result, operatofB5) takes the form33). It is easy to
prove that this operator is Hermitian and has the property

&2
D2= EW (B7)
To obtain the nilpotent form
1
w3 v(o(oas, ®8)

of the potential energ{B3), we expand the potential ¢) at
hand in powers of the terrm(lp)q?,

1
WZEJ v(c)+(n

(B9)

71_
e )ﬁ}df}.

PHYSICAL REVIEW E 69, 021803 (2004

Y

a) -l

FIG. 7. Poles of the convolution integral in Eq€2)(a) and

(C7)(b). =& &7

where anticommutating Grassmannian variablesé are
connected with the commutating nilpotent ofieby means

of the equalityd= 6. In such a case, the equations of mo-
tion (22) and (23) are supplemented with two equations for
the conjugate fieldg/(n), #(n) whose combination arrives
at the continuity equation for a quantify= () playing

the role of the density of interface boundariéd]. Thus, we
can conclude that the weak segregation limit related to the
density /=0 means suppression of the Grassmannian com-

Here, all terms of higher order vanish because of the nilpoponents reducing the four-component supersymmetrical field

tency condition. Given the properties of equaliti@$), the
integration in Eq.(B9) leads to the desired resyB3).

When an infinitesimal incremerdig is added to the field
¢, the action related to the Lagrangi@Bl) with compo-
nents(B4) and(B8) acquires the zeroth addition if supersym-
metric Euler equation is valid,

oL oL
0

Lm‘f‘ %: . (B10)

Substituting here the expressioi) and(B8), we arrive at
the supersymmetric equation of motion

o —o
Sp(z)

that is reduced to the systef22), (23). Multiplying Eq.
(B11) by the field¢(z") and averaging the result, we arrive
at the Dyson equatio(b4) where the self-energy function is
defined by the equality

S(z,2')= —J <

Lo(2)+ (B11)

om 1" >C—1 "o dZn
54)(2) ¢(Z ) (Z \Z ) .
(B12)

(B13) to the two-component dual forif25).

APPENDIX C: CALCULATIONS OF CONVOLUTION
INTEGRALS

a. Self-energy function€alculations of the self-energy
functions(50), (51) lead to a rather tedious procedure due to
the convolution integrals. To demonstrate the line of these
calculations we consider in detail the simplest integral re-
lated to the first term in Eq51),

d
E’i(V)=sz Z_I:S(Vl)Gf(V_Vl)- (CD

Making use of the expressioit37) for the structure factos
and Green functios_ , where the frequency dispersed pa-
rameterr(v) is replaced by its bare magnitueteone arrives
at the convolution integral

% f
2mn3) (

where a characteristic frequeney,=17/n. is introduced.

dVl

w2+ ) ws—i(v—vy)]’

2 (v)= (C2

For performing immediate calculations it is much more con-This integral has the polesiws andv+iws [see Fig. Ta)].

venient to use the standard perturbation thddny that ar-
rives at the expression50), (51).

In accordance with the theory of residy@g], the integral in
Eqg. (C2) is reduced to sum over two of these residues that

It is worthwhile to note finally that the above Jacobian locate in upper half-plane of the complex frequengy

reduced in Eq(15) to the constant value, is relevant to the

weak segregation limit. Indeed, in the opposite case a pas-

sage to the canonical representatiol type of @@ de-

mands introducing Grassmannian fielgg), (n) that ex-
pand the dual field25) to the four-component forrl1]

®=5c+ Oy+ 6+ (n 1p) 66, (B13)

2 o =) T vt 2ieg) |

(C3)

where terms in the square brackets relate to the palgand
v+iwg, respectively. After a simple algebra this expression
yields
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where one denotes

i
1+ ¢
2 2 v -1
E’i=g— A = (CY £0= 16me¢7 M_2+ \?
T nc + g S 0 nc 4 34T|’]C ’
Analogously, the rest of convolution integrals are calculated 5
giving final form of Eqs.(50) and (51): £ = Ne 2, \? )
v 2Me¢T 87°n a 9rng/ |’
Mz 1 A2 c
= + , (CH
27N, 4+ £ 87°n2 9+ ¢ , N L1 ( , A\ ) 8
= - + )
i £ M7 47'3nC H 67n;

1+5 _.
s = u? "2 d n \? 3Fig C6 The integral in Eq(C7) has the pole structure that is shown
) in Fig. 7(b). As above, the sum over residues located in the

©ncdrel Brng 9t e half-plane of th lex f ields the int
b. Renormalization mass parametExplicit form of the upper half-plane of the complex frequengyields the inte-

renormalization mass parameteid) is determined by the gral value
structure factoK55) and Green functiot57) with the effec- - §§— 4 fi
tive masg45) and parameter(v) being replaced by barg E( 1- ?) (C9)
061
o? (61— &€ §d¢ Account i i
- f ccounting for the notice$C8) and keeping only the terms
TNeMet) (£2—-2i¢,6— g%)(52+ 2i§1§—§§) ' of the second order of smallness over parameteend \,
(C7) one obtains the final expressi@ho).
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